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Abstract

We present a thorough inspection of the dynamical behavior of epidemic phenomena in populations with complex and

heterogeneous connectivity patterns. We show that the growth of the epidemic prevalence is virtually instantaneous in all networks

characterized by diverging degree fluctuations, independently of the structure of the connectivity correlation functions

characterizing the population network. By means of analytical and numerical results, we show that the outbreak time evolution

follows a precise hierarchical dynamics. Once reached the most highly connected hubs, the infection pervades the network in a

progressive cascade across smaller degree classes. Finally, we show the influence of the initial conditions and the relevance of

statistical results in single case studies concerning heterogeneous networks. The emerging theoretical framework appears of general

interest in view of the recently observed abundance of natural networks with complex topological features and might provide useful

insights for the development of adaptive strategies aimed at epidemic containment.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Accurate mathematical models of epidemic spreading
are the basic conceptual tools in understanding the
impact of diseases and the development of effective
strategies for their control and containment (Bailey,
1975; Anderson and May, 1992; Diekmann and
Heesterbeek, 2000; Dailey and Gani, 2001). In order
to increase the relevance and utility of these strategies,
it is crucial that models contain the key features that
appropriately characterize the system of interest.
The age and social structure of the population, the
contact network among individuals, and the meta-
e front matter r 2005 Elsevier Ltd. All rights reserved.
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population characteristics such as the geographical
patch structure, are all factors that might acquire a
particular relevance in a reliable epidemic model (for
a recent review on the subject see (Ferguson et al.,
2003)). Among these features, the connectivity pattern
of the network of contacts among individuals along
which the disease can be transmitted has been acknowl-
edged since a long time as a relevant factor in
determining the properties of epidemic spreading
phenomena (see Yorke et al., 1978; Hethcote and
Yorke, 1984; May and Anderson, 1988; Anderson and
May, 1992; Eubank et al., 2004 and references therein).
In these studies, it was observed that the heterogeneity
of the population network in which the disease spreads
may have noticeable effects in the evolution of the
epidemic as well as in the effect of immunization
strategies.

www.elsevier.com/locate/yjtbi


ARTICLE IN PRESS
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The study of the impact of network structure in the
epidemic modeling has been recently revamped by the
large number of results on large networked systems
pointing out the ubiquitous presence of heterogeneities
and complex topological features on a wide range of
scales (Albert and Barabási, 2002; Dorogovtsev and
Mendes, 2003; Pastor-Satorras and Vespignani, 2004). A
striking example of this new framework is provided by
scale-free networks, which are characterized by virtually
infinite fluctuations in the number of connections k (the
degree) that any given vertex in the network may have.
This feature finds its signature in a heavy-tailed degree
distribution (defined as the probability that any vertex is
connected to k other vertices), often approximated by a
power-law behavior of the form PðkÞ � k�g; with
2ogp3: This implies an unexpected statistical abun-
dance of vertices with very large degrees; i.e. the so called
‘‘hubs’’ or ‘‘superspreaders’’ (Yorke et al., 1978). In
heavy-tailed networks the abundance of those vertices
reaches a level that guarantees the proliferation of a large
number of infected individuals whatever the rate of
infection characterizing the epidemic, eventually leading
to the absence of any epidemic threshold below which the
infection cannot initiate a major outbreak (Pastor-
Satorras and Vespignani, 2001a,b; May and Lloyd,
2001; Moreno et al., 2002; Newman, 2001). This peculiar
theoretical scenario, however, turns out to be of practical
importance since both the sexual contact pattern (Colgate
et al., 1989; Liljeros et al., 2001; Schneeberger et al., 2004)
and several technological networks (Pastor-Satorras and
Vespignani, 2001a; Lloyd and May, 2001; Pastor-
Satorras and Vespignani, 2004) appear to have a skewed
and heavy-tailed degree distribution. This implies that
both sexually transmitted diseases and computer viruses
may fit in this scenario, raising new questions and
scrutiny on several epidemic models and strategies aimed
at optimizing the deployment of immunization resources
(Dezsö and Barabási, 2002; Cohen and Havlin, 2003).
In this paper, we provide a thorough presentation of

results concerning the analysis of the time evolution of
epidemic outbreaks in complex networks with highly
heterogeneous connectivity patterns. We consider the
time behavior of epidemic outbreaks in the general class
of models without and with internal recovery and find
that the growth of infected individuals is governed by a
time-scale t proportional to the ratio between the first
and second moment of the network’s degree distribution
(Barthélemy et al., 2004), t � hki=hk2

i: This implies that
the larger the degree fluctuations (governed by hk2

i), the
faster the epidemic propagation will be. In particular, a
virtually instantaneous rise of the prevalence is obtained
in scale-free networks where hk2

i ! 1 for infinite
network sizes. This result is shown to be valid also in
networks with non-trivial connectivity correlation func-
tions as often encountered in real systems analysis.
Furthermore, we study the detailed propagation in time
of the infection through the different degree classes in
the population. We find a striking hierarchical
dynamics in which the infection propagates via a
cascade that progresses from higher to lower degree
classes. This infection hierarchy might be used to
develop dynamical ad hoc strategies for network
protection. Finally, we study the influence of initial
conditions on the epidemic development and the
relevance of statistical results in the case of single case
studies. All the analytical discussion is supplemented
with careful numerical simulations at the discrete
individual level.
2. Basic theory of epidemic dynamics

2.1. Reproductive number and time evolution

At first instance epidemiological studies deal with the
properties of epidemics in the equilibrium or long-time
steady state such as a non-zero prevalence state
associated to the presence of an endemic phase, the
presence or absence of a global outbreak, or the non-
seasonal cycles that are observed in many infections
(Anderson and May, 1992). As well, the dynamical
evolution of epidemics outbreaks and the effects of the
introduction of a seed of infection into a large
population of susceptible individuals are of great
concern. A basic parameter in epidemiology is the basic
reproductive number R0, which counts the number of
secondary infected cases generated by one primary
infected individual. Under the assumption of the
homogeneous mixing of the population if an infected
individual is in contact with hki other individual, the
basic reproductive number is defined as

R0 ¼
lhki
m

, (1)

where l is the spreading rate, defined as the probability
rate that a susceptible individual in contact with an
infected individual will contract the disease, and m is the
recovery rate of infected individuals, either to the
susceptible or the recovered states. It is easy to under-
stand that any epidemic will spread across a non-zero
fraction of the population only for R041: In this case
the epidemic is able to generate a number of infected
individuals larger than those which are recovered,
leading to an increase of the infected individuals i(t) at
time t following the exponential form

iðtÞ ’ i0e
t=td . (2)

Here i0 is the initial density of infected individuals and td

is the typical outbreak time, that in general reads as
(Anderson and May, 1992)

t�1d ¼ mðR0 � 1Þ. (3)



ARTICLE IN PRESS
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The previous considerations lead to the definition of a
crucial epidemiological concept, namely the epidemic
threshold. Indeed, if the spreading rate is not large
enough to allow a reproductive number larger than one
ðl4m=hkiÞ; the epidemic outbreak will not affect a finite
portion of the population and dies out in a finite time. In
epidemiological studies for which the two important
assumptions of ‘‘homogeneous mixing’’ and constant
infectiousness (constant l) are made, the spreading
pattern of the epidemics is therefore controlled by the
generation time-scale 1=l and R0 and there are roughly
three different stages in an epidemics (Ferguson et al.,
2003). More precisely, when infectious individuals are
introduced in a network, one observes a first noisy phase
followed in general by an exponential outbreak of the
epidemics. Depending on the long-term behavior of
individuals against the disease we will observe at large
times a different behavior described by the specific
epidemic model used (see Fig. 1).
The above considerations and parameters are at the core

of several epidemic models based on the compartmenta-
lization of the population. In other words, each individual
of the population can only exist in a certain number of
discrete states such as susceptible, infected or permanently
recovered. The latter state is equivalent to the removal of
the individual from the population since it is supposed that
it cannot get the infection anymore. The total population
N is assumed to be constant and if S(t), I(t) and R(t) are
the number of susceptible, infected and removed indivi-
duals at time t, respectively, then N ¼ SðtÞ þ IðtÞ þ RðtÞ:
The simplest epidemiological model one can consider is the
susceptible-infected-susceptible (SIS) model. The SIS
model is mainly used as a paradigmatic model for the
study of infectious diseases leading to an endemic state
with a stationary and constant value for the prevalence of
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Fig. 1. Typical profile of density of infected versus time on a given

realization of the network. In the first regime tot1; the outbreak did

not start and there are fluctuations. In the second regime, t1otot2
there is an exponential growth characterized by R0. In the final regime

ðt4t2Þ; the density of infected either converges to a constant for the

SIS model or to zero for the SIR model.
infected individuals, i.e. the degree to which the infection is
widespread in the population. In the SIS model, indivi-
duals can only exist in two discrete states, namely,
susceptible and infected. The disease transmission is
described in an effective way. The probability that a
susceptible vertex acquires the infection from any given
neighbor in an infinitesimal time interval dt is ldt; where l
defines the virus spreading rate. At the same time, infected
vertices are cured and become again susceptible with
probability mdt: Individuals thus run stochastically
through the cycle susceptible - infected - susceptible,
hence the name of the model. The SIS model does not take
into account the possibility of individuals removal due to
death or acquired immunization, which would lead to the
so-called susceptible-infected-removed (SIR) model (An-
derson and May, 1992; Murray, 1993). The SIR model, in
fact, assumes that infected individuals disappear perma-
nently from the network with rate m: In models such as the
SIS, the number of infected individuals increases up to a
stationary constant value which is non-zero if R041: On
the contrary, in models such as the SIR, the number of
infected individuals tends toward zero since all infected
will sooner or later become removed from the population.
Also in this case, however, a finite fraction of the
population is affected by the epidemic outbreak only if
R041: It should be noted that it is also possible to induct
a steady state in the SIR model, by introducing new
susceptible individuals at a constant rate. This new
parameter constitutes a new time-scale that gives rise to
oscillations in the endemic phase (May and Anderson,
1984).

2.2. Complex heterogeneous networks

The general picture presented in the previous section
is obtained in the framework of the homogeneous
mixing hypothesis. This hypothesis assumes that the
network of contacts among individuals has very small
degree fluctuations. In other words, the degree k

fluctuates very little and we can assume k ’ hki; where
the brackets h�i denote the average over the degree
distribution.
However, networks can be very heterogeneous. Social

heterogeneity and the existence of ‘‘super-spreaders’’
have been known for long time in the epidemics
literature (Hethcote and Yorke, 1984). The signature
of this large heterogeneity can be measured in the degree
distribution P(k) which in this case decays very slowly.
Indeed, in a homogeneous network such as a random
graph (Erdös and Rényi, 1959), P(k) decays faster than
exponentially, while for scale-free networks (Albert and
Barabási, 2002) it decays as a power law for large k

PðkÞ � k�g. (4)

Examples of such networks relevant to epidemics studies
include the Internet (Pastor-Satorras and Vespignani,
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2004), the network of airline connections (Guimerà
et al., 2003; Barrat et al., 2004), or the web of sexual
contacts (Colgate et al., 1989; Liljeros et al., 2001;
Schneeberger et al., 2004). In these networks, the
average degree (k) is no longer the relevant variable
and one expects the fluctuations, described by hk2

i; to
play an important role.
The question of the effect of the heterogeneity on

epidemic behavior has been addressed at various levels
(Hethcote and Yorke, 1984) and analysed in details in
the last years for scale-free networks (Pastor-Satorras
and Vespignani, 2001a,b). These studies were concerned
with the stationary limit and the existence of an endemic
phase. A key result is the expression of the basic
reproductive number which in this case takes the form

R0 /
hk2

i

hki
. (5)

The important fact here is that R0 is proportional to the
second moment of the degree, which diverges for
increasing network sizes. This has some important
epidemiological consequences. Indeed, whatever the
spreading rate l the basic reproductive rate is always
larger than one, thus leading to the lack of any epidemic
threshold. In other words, in heterogeneous networks,
whatever the infection rate, the epidemics has a finite
probability to generate a major outbreak.
These results, while extremely important, consider

only one face of networks complexity. In general,
however, real networks have other complex features
such as strong degree correlation among connected
vertices. This feature is mathematically characterized
through the conditional probability Pðk0

jkÞ that a vertex
of degree k is connected to a vertex of degree k0.
Networks which are completely defined by the degree
distribution P(k) and the conditional probability Pðk0

jkÞ

are called Markovian networks (Boguñá and Pastor-
Satorras, 2002) and must fulfill the following degree
detailed balance condition

kPðk0
jkÞPðkÞ ¼ k0Pðkjk0

ÞPðk0
Þ. (6)

This expression is a mathematical statement of the
obvious observation that, in any real network, all edges
must point from one vertex to another.
The full knowledge of the function Pðk0

jkÞ; which
measures the correlations in the network, would often be
difficult to interpret. Therefore, the average nearest

neighbor degree knn, and the behavior of this quantity as
a function of the degree, knnðkÞ ¼

P
k0 k0Pðk0

jkÞ; have
been proposed to measure these correlations (Pastor-
Satorras and Vespignani, 2004). In the absence of degree
correlations, Pðk0

jkÞ does not depend on k and neither
does the average nearest neighbors’ degree; i.e. knnðkÞ ¼

const: (Pastor-Satorras and Vespignani, 2004). In the
presence of correlations, the behavior of knn(k) identifies
two general classes of networks. If knn(k) is an increasing
function of k, vertices with high degree have a larger
probability to be connected with large degree vertices.
This property is referred in physics and social sciences as
assortative mixing (Newman, 2002a,b). On the contrary,
a decreasing behavior of knn(k) defines disassortative

mixing, in the sense that high-degree vertices have a
majority of neighbors with low degree, while the
opposite holds for low-degree vertices. These possibi-
lities are summarized in Fig. 2. Among real networks,
many social networks display assortative mixing, while
technological networks show typically disassortative
properties. In summary, the average nearest neighbor
degree carry an information about two-point correla-
tions which is easy to interpret and avoids the fine
details of the full distribution Pðk0

jkÞ:
The propagation of epidemics on a network may a

priori be modified by the presence of correlations. The
quantity knn seems in this context very relevant, since it
measures the number of individuals that may be reached
by the infection in few steps. In general, however, it has
been shown in (Boguñá et al., 2003a,b) that, in any
scale-free network with diverging second moment hk2

i;
the epidemic threshold of the model vanishes, regardless
of the presence of correlations. In finite networks, the
role of correlations appears through the fact that the
epidemic threshold is bounded from above by a quantity
which depends on knn (Boguñá et al., 2003a,b).
While these results contribute to a general under-

standing of epidemic spreading in complex networks,
they do not provide a large amount of information
about the time patterns of the dynamical process and
how effectively the spreading occurs. Uncovering these
patterns and their relation to the heterogeneity of the
networks is crucial for assessing control strategies. In the
following sections we will approach this problem within
a general formalism, valid for most kind of epidemic
processes in heterogeneous networks.
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3. The early stages of the epidemic outbreak

In order to understand how the topology of the
network of contacts affects the dynamical process of
epidemics spreading, we will perform a study on
different kinds of networks. Most complex networks
can be classified according to the decay of their
degree distribution (Amaral et al., 2000). We will
first consider the case where the degree distribution
decays faster than any power-law, typically as an
exponential (or faster), such as for the random
(Poisson) graph (Erdös and Rényi, 1959). For this
sort of networks, the degree fluctuations are very
small and we can approximate the degree of every
vertex as a constant, k � hki: This approximation,
used in most previous studies (Anderson and May,
1992; Murray, 1993), corresponds to the homogeneous
mixing case in which all individuals have the same
environment, and the same number of acquaintances
that can be infected. We will then consider the
case of heterogeneous networks, exemplified in the
case of the scale-free networks, and show how
the large heterogeneity induces changes in the epidemic
process.
Both the SIS and SIR models introduce a time-scale

tr ¼ 1=m governing the self-recovery of individuals.
Since we are especially interested in the onset
dynamics of outbreaks two scenarios are in order.
If tr is smaller than the spreading time-scale, then the
process is dominated by the natural recovery of infected
to susceptible or removed individuals. This situation is
however less interesting since it corresponds to a
dynamic process governed by the decay into a healthy
state and the interaction with neighbors plays a minor
role. Epidemiological concern is therefore in the regime
trb1=l; i.e. a spreading time-scale much smaller than
the recovery time-scale. In this case, as a first
approximation, we can neglect the individual recovery
that will occur at a much later stage and focus on the
early dynamics of the epidemic outbreak. This case
corresponds to the simplified susceptible-infected (SI)
model, for which infected nodes remain always
infective and spread the infection to susceptible neigh-
bors with rate l; the seed of infectives placed at time
t ¼ 0 will thus infect the rest of the network, the
dynamical process being controlled by the topology
of the network. The SI model thus appears as the
simplest framework for assessing the effect of network’s
topology on the spreading dynamics. This argument
is the reason why we will present our calculations
for the simple SI model. For the sake of completeness,
however, we will readily show in the next sections
that the results obtained for the SI model can be
considered as fairly general and can be easily
extended to SIS and SIR models for heterogeneous
networks.
3.1. Homogeneous networks

A first analytical description of the SI model can be
undertaken within the homogeneous mixing hypothesis
(Anderson and May, 1992; Murray, 1993), consisting in
a mean-field description of the system in which all
vertices are considered as being equivalent. In this case
the system is completely defined by the number of
infected individual I(t), and the reaction rate equation
for the density of infected individuals iðtÞ ¼ IðtÞ=N

(where N is the total size of the population) reads as

diðtÞ

dt
¼ lhkiiðtÞ½1� iðtÞ�. (7)

The above equation states that the growth rate of
infected individuals is proportional to the spreading
rate l; the density of susceptible vertices that may
become infected, sðtÞ ¼ 12iðtÞ; and the number of
infected individuals in contact with any susceptible
vertex. The homogeneous mixing hypothesis
considers that this last term is simply the product of
the number of neighbors hki and the average density i(t).
Obviously, this approximation neglects correlations
among individuals and considers that all vertices
have the same number of neighbors hki; i.e. it
assumes a perfectly homogeneous network. The solution
of Eq. (7) reads

iðtÞ ¼
i0 expðt=tH Þ

1þ i0½expðt=tH Þ � 1�
, (8)

where i0 is the initial density of infected individuals and
tH ¼ ðlhkiÞ�1 is the time-scale of the infection
growth. At small times, when the density of
infected vertices is very small, the leading behavior is
given by iðtÞ ’ i0e

t=tH ; i.e. by an exponential growth.
The value of tH corresponds to the intuitive fact that
small spreading rates decrease the growth velocity, while
a larger number of neighbors ensures a faster invasion
of the network.

3.2. Heterogeneous networks

The above calculations are valid for networks in
which the degree fluctuations are very small, i.e. k � hki

for all vertices in the network. We face however a
different situation in networks with a heterogeneous
connectivity pattern. In this case the degree k of vertices
is highly fluctuating and the average degree is not
anymore a meaningful characterization of the network
properties. In order to take this into account, it is
possible to write down the reaction rate equations for
the densities of infected vertices of degree k, ikðtÞ ¼

IkðtÞ=Nk; where Nk (resp. Ik(t)) is the number of
vertices (resp. infected vertices) within each
degree class k (Pastor-Satorras and Vespignani,
2001a). In the case of the SI model the evolution
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equations read (Boguñá et al., 2003a,b)

dikðtÞ

dt
¼ l½1� ikðtÞ�kYkðtÞ, (9)

where the creation term is proportional to the spreading
rate l; the degree k, the probability 1�ik that a vertex
with degree k is not infected, and the density Yk of
infected neighbors of vertices of degree k. The latter
term is thus the average probability that any given
neighbor of a vertex of degree k is infected.
The simplest situation one can encounter corresponds

to a complete lack of correlations (We will address the
case of correlated networks in Section 3.4). A network is
said to have no degree correlations when the probability
that an edge departing from a vertex of degree k arrives
at a vertex of degree k0 is independent of the degree of
the initial vertex k. In this case, the probability that each
edge of a susceptible is pointing to an infected vertex of
degree k0 is proportional to the fraction of edges
emanated from these vertices. Moreover, each infected
vertex can either be one of the initial seeds or be infected
at t40: In the latter case, at least one of the edges of the
infected vertex is pointing to another infected vertex,
from which the infection has been transmitted. The term
Y is therefore the sum of two terms

YkðtÞ ¼ YðtÞ ¼

P
k0 k0Pðk0

Þik0 ð0Þ

hki

þ

P
k0 ðk0

� 1ÞPðk0
Þðik0 ðtÞ � ik0 ð0ÞÞ

hki
, ð10Þ

where hki ¼
P

k0 k0Pðk0
Þ is the proper normalization

factor dictated by the total number of edges.
A reaction rate equation for YðtÞ can be obtained

from Eqs. (9) and (10). In the initial epidemic stages,
neglecting terms of order Oði2Þ; the following set of
equations is obtained

dikðtÞ

dt
¼ lkYðtÞ, (11)

dYðtÞ

dt
¼ l

hk2
i

hki
� 1

� �
YðtÞ. (12)

These equations can be solved, yielding for the
prevalence of nodes of degree k, in the case of an
uniform initial condition ikðt ¼ 0Þ ¼ i0;

ikðtÞ ¼ i0 1þ
khki

hk2
i � hki

ðet=t � 1Þ

� �
(13)

and for the total average prevalence iðtÞ ¼
P

k PðkÞikðtÞ

iðtÞ ¼ i0 1þ
hki2

hk2
i � hki

ðet=t � 1Þ

� �
, (14)

where

t ¼
hki

lðhk2
i � hkiÞ

. (15)
The result Eq. (15) for uncorrelated networks readily
implies that the growth time-scale of an epidemic
outbreak is related to the graph heterogeneity. Indeed,
the ratio

k ¼
hk2

i

hki
(16)

is the parameter defining the level of heterogeneity of the
network, since the normalized degree variance can be
expressed as k=hki � 1 and therefore high levels of
fluctuations correspond to kb1: In homogeneous net-
works with a Poisson degree distribution, in which k ¼

hki þ 1 we recover the result t ¼ ðlhkiÞ�1; corresponding
to the homogeneous mixing hypothesis. On the other
hand, in networks with very heterogeneous connectivity
patterns, k is very large and the outbreak time-scale t is
very small, signaling a very fast diffusion of the
infection. In particular, in scale-free networks charac-
terized by a degree exponent 2ogp3 we have that k �

hk2
i ! 1 with the network size N ! 1: Therefore in

uncorrelated scale-free networks we face a virtually
instantaneous rise of the epidemic incidence. For large
real-world networks, t ! 0 implies that the time-scale
associated with the network is dominated by the finite
size of the network (hk2

i will be very large but finite) and
is thus very small. In this case, the propagation time-
scale is likely to have a lower cut-off generally set by
other features of the spreading processes not related to
the topology of the network.

3.3. Extension to the SIS and SIR models

It is worth stressing that the above results can be
easily extended to the SIS and the SIR models
(Anderson and May, 1992). In the case of uncorrelated
networks, Eq. (9) contains, for both the SIS and the SIR
models, an extra term �mikðtÞ defining the rate at which
infected individuals of degree k recover and become
again susceptible or permanently immune and thus
removed from the population, respectively:

dikðtÞ

dt
¼ lkskðtÞYkðtÞ � mikðtÞ. (17)

In the SIS model we have, as usual, skðtÞ ¼ 1� ikðtÞ: In
the SIR model, on the other hand, the normalization
imposes that skðtÞ ¼ 1� ikðtÞ2rkðtÞ; where rkðtÞ is the
density of removed individuals of degree k. The
inclusion of the decaying term �mik; does not change
the picture obtained in the SI model. By using the same
approximations, the time-scale is found to behave as

t �
hki

lhk2
i � ðmþ lÞhki

. (18)

In the case of diverging fluctuations the time-scale
behavior is therefore still dominated by hk2

i and t is
always positive and going to 0 as hk2

i ! 1 whatever
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the spreading rate l: This allows to recover the absence
of an epidemic threshold, i.e. the lack of a decreasing
prevalence region in the parameter space. It must be
noted, however, that if fluctuations are not diverging,
the outbreak time-scale is slightly different for the SIS
and SIR models (Eq. (18)) than for the SI model
(Eq. (15)).

3.4. Heterogeneous correlated networks

While we have so far restricted our study to the case
of uncorrelated networks, it is worth noting that many
real networks do not fill this assumption (Dorogovtsev
and Mendes, 2003; Pastor-Satorras and Vespignani,
2004). In order to consider the presence of non-trivial
correlations we have to fully take into account the
structure of the conditional correlation function P(k0|k).
The equations we have written for the evolution of ik in
the SI model can therefore be stated as (Boguñá et al.,
2003a,b)

dikðtÞ

dt
¼ l½1� ikðtÞ�kYkðtÞ,

Yk ¼
X

k0

k0
� 1

k0 Pðk0
jkÞðik0 ðtÞ � ik0 ð0ÞÞ

þ
X

k0

Pðk0
jkÞik0 ð0Þ: ð19Þ

Here the Yk function takes into account explicitly the
structure of the conditional probability that an infected
vertex with degree k0 points to a vertex of degree k, with any
of the k0�1 free edges it has (not pointing to the original
source of its infection). In the absence of correlations, it is
possible to see that Pðk0

jkÞ ¼ k0Pðk0
Þ=hki; recovering the

results of Section 3.2. If the network presents correlations,
measured by Pðk0

jkÞ; the situation is slightly more complex.
The rate equation for ikðtÞ can be written in this case,
neglecting terms of order Oði2Þ; as

dikðtÞ

dt
¼

X
k0

lk
k0

� 1

k0 Pðk0
jkÞik0 ðtÞ þ lk

X
k0

ik0 ð0Þ

k0 Pðk0
jkÞ

�
X

k0

Ck;k0 ik0 ðtÞ þ lk
X

k0

Pðk0
jkÞ

ik0 ð0Þ

k0 , ð20Þ

which is a linear systems of differential equations governed
by the matrix C ¼ fCk;k0 g of elements

Ck;k0 ¼ lk
k0

� 1

k0 Pðk0
jkÞ. (21)

Elementary considerations from mathematical analysis tell
us that the behavior of ik(t) will be given by a linear
combination of exponential functions of the form expðLitÞ;
where Li are the eigenvalues of the matrixC. Therefore, the
dominant behavior of the averaged prevalence will be

iðtÞ � eLmt, (22)
where Lm is the largest eigenvalue of the matrix C. In the
case of an uncorrelated network, we have that Cnc

k;k0 ¼

lkðk0
� 1ÞPðk0

Þ=hki; which has a unique eigenvalue
satisfyingX

k0

Ck;k0Ck0 ¼ Lnc
mCk, (23)

where Lnc
m ¼ lðhk2

i=hki � 1Þ; and where the corresponding
eigenvector is Ck ¼ k; thus recovering the previous result
Eq. (15) for this kind of networks.
In the case of correlated networks, it has been shown

using the Frobenius theorem (Gantmacher, 1974) that
the largest eigenvalue is bounded from below (Boguñá et
al., 2003a,b)

L2
mXmin

k

X
k0

X
l

ðk0
� 1Þðl � 1ÞPðljkÞPðk0

jlÞ: (24)

This equation is very interesting since it can be rewritten
as

L2
mXmin

k

X
l

ðl � 1ÞPðljkÞðknnðlÞ � 1Þ: (25)

It has been shown (Boguñá et al., 2003a,b) that, for
scale-free network with 2pgp3; knn(l) diverges for
infinite size systems ðN ! 1Þ: This ensures that also Lm

diverges. Two particular cases have however to be
treated separately: it may happen that, for some k0,
Pðljk0Þ ¼ 0; then the previous limit for L2

m gives no
information but it is then possible to show with slightly
more involved calculations that Lm still diverges for
N ! 1 (Boguñá et al., 2003a,b). Another problem
arises if knn(l) diverges only for l ¼ 1; this happens
however only in particular networks where the singu-
larity is accumulated in a pathological way onto vertices
with a single edge. Explicit examples of this situation are
provided in (Vázquez and Moreno, 2003).
The previous result has the important consequence

that, even in the presence of correlations, the time-scale
t � 1=LM tends to zero in the thermodynamic limit for
any scale-free network with 2ogp3: It also underlines
the relevance of the quantity knn, which gives a lower-
bound for Lm in finite networks. In the next sections we
will analyse numerically both the SI and SIS models in
order to provide a full account of the dynamical
properties that takes into account the network’s com-
plexity as well as finite size effects in the population.
4. Numerical simulations

In order to test the analytical predictions made in the
previous sections, we have performed extensive numer-
ical simulations of the SI and the SIS model in two
different paradigmatic examples of complex network
models with homogeneous and heterogeneous proper-
ties. The choice of the network models was dictated by
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the request of generating an uncorrelated network, to
fully exploit the analytical predictions. Simulations use
an agent-based modeling strategy in which at
each time step the SI dynamics is applied to each
vertex by considering the actual state of the vertex and
its neighbors. It is then possible to measure the
evolution of the number of infected individuals and
other quantities. In addition, given the stochastic
nature of the model, different initial conditions and
networks realizations can be used to obtain
averaged quantities. In our simulations, we use N ¼

104 and (k) ranging from 4 to 20. We typically average
our results for a few hundred networks while for each
network, we average over a few hundreds different
initial conditions.

4.1. Homogeneous networks

The example of homogeneous complex network we
have chosen is the random graph model proposed by
Erdös and Rényi (1959) (see e.g. Bollobás, 1985). The
network is constructed from a set of N different vertices,
in which each one of the NðN � 1Þ=2 possible edges is
present with probability p (the connection probability),
and absent with probability 1�p. This procedure results
in a random network with average degree hki ¼ pN and
a Poisson degree distribution in the limit of large N and
constant hki;

PðkÞ ¼ e�hki hki
k

k!
. (26)

For hki41; it can be proved that the network exhibits a
giant component, that is, a set of connected vertices
whose size is proportional to N. In an actual realization,
however, it is possible to generate networks in which a
t
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Fig. 3. Main frame: the symbols correspond to simulations of the SI

model with l ¼ 1024 on ER networks with N ¼ 104; hki ¼ 20; 40; the
lines are fits of the form of Eq. (8). Inset: measured time-scale t; as
obtained from fitting, versus the theoretical prediction for different

values of hki and l:
fraction of the vertices belong to disconnected clusters.
Therefore, we make the computer simulations of the
spreading models only on the giant component.
In the case of the random graph, we checked the

validity of Eq. (8), and that the time-scale is given by
1=lhki; as can be seen in Fig. (3).
Needless to say, in the case of a homogeneous

network, the hypothesis k ’ hki captures the correct
dynamical behavior of the spreading. This is a standard
result and we report the numerical simulations just as a
reference for comparison with the following numerical
experiments on heterogeneous networks.

4.2. Heterogeneous networks

As a typical example of heterogeneous network, we
have chosen the networks generated with the Barabási
–Albert (BA) algorithm (Barabási and Albert, 1999). In
this algorithm, the network starts from a small core of
m0 connected vertices. At each time step a new vertex is
added, with m edges ðmom0Þ connected to the old
vertices in the network. The new edges are connected to
an old vertex i with a probability proportional to its
degree ki (preferential attachment). The networks gener-
ated by this algorithm have a minimum degree m, an
average degree hki ¼ 2m; a scale-free degree distribution
PðkÞ � k�3 and vanishingly small correlations (Pastor-
Satorras and Vespignani, 2004). In our simulations we
use different network sizes N and minimum degree
values m in order to change the level of heterogeneity,
that in this case is given by k � m lnN :
In the simulation we keep track of the average density

of infected individuals versus time for a network
generated with the preferential attachment rule. In
Fig. 4 we show a typical result and the fitting procedure
which allows us to measure the value of t:
0 50 100
t

10-3

10-2

i(
t)

0 1000 2000 3000 4000 5000 6000
t

0

0.2

0.4

0.6

0.8

1

i(
t)

Fig. 4. Average density of infected individuals versus time in a BA

network of N ¼ 104 with m ¼ 2: The inset shows the exponential fit

obtained in the early times (lines) and the numerical curves i(t) for

networks with m ¼ 4; 8; 12; 20 (from bottom to top).
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Fig. 5. Measured time-scale t in BA networks as obtained from

exponential fitting versus the theoretical prediction for different values

of m and N corresponding to different levels of heterogeneity.
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Fig. 6. SIS model on a BA network with N ¼ 104; m ¼ 8; l ¼ 1023;
and m ¼ 0; 1024; 1023; 1022 from top to bottom. The inset focuses on

the short-time dynamics: the curve is superimposed on data for the SI

model up to more than 10t ðm ¼ 0Þ for m ¼ 1024 and up to a few times

tðm ¼ 0Þ for m ¼ 1023:
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In Fig. 5 we report the early time behavior of
outbreaks in networks with different heterogeneity levels
and the behavior of the measured t with respect to
hki=lðhk2

i � hkiÞ: The numerical results recover the
analytical prediction with great accuracy. Indeed, the
BA network is a good example of uncorrelated
heterogeneous network in which the approximations
used in the calculations are satisfied. In networks with
correlations we expect to find different quantitative
results but a qualitatively similar framework as it
happens in the case of the epidemic threshold evaluation
(Boguñá et al., 2003a,b).
4.3. The SIS dynamics

As claimed in previous sections, we have tested that at
short times and for large heterogeneous networks
ðkb1Þ; the SI model is a good approximation to the
more general SIS model described by Eq. (17). In Fig. 6
we plot i(t) versus t for a simulation of the SI and the
SIS model with l ¼ 1023; on a BA network with m ¼ 8
and N ¼ 104; corresponding to hki ¼ 16 and hk2

i � 632:
We took different values for the parameter m: m ¼ 0
(which corresponds to the SI model), m ¼ 1024; 1023;
1022; Eq. (18) yields the following values for t: tðm ¼

0Þ � 26; tðm ¼ 0:0001Þ � 26:1; tðm ¼ 0:001Þ � 26:7;
tðm ¼ 0:01Þ � 35: Fig. 6 clearly shows that indeed for
mhki5lhk2

i and short times the curves are indistinguish-
able so that the SIS model is well described by the SI
approximation in this regime. As m gets larger the
behavior changes since the time-scale of the recovery is
no longer much larger than the other time-scales. It is
possible to show that the same results apply also in the
case of the SIR model.
5. The infection time pattern: the cascade effect

The previous results show that the heterogeneity of
scale-free connectivity patterns favors epidemic spread-
ing not only by suppressing the epidemic threshold, but
also by accelerating the epidemic propagation in the
population. The velocity of the spreading leaves us with
very short response times in the deployment of control
measures and a detailed knowledge of the way epidemics
propagate through the network could be very valuable
in the definition of adaptive strategies. Indeed, the
epidemic diffusion is far from homogeneous. The simple
formal integration of Eq. (9) written for sk ¼ 1� ik

yields

skðtÞ ¼ s0ke
�lkFðtÞ, (27)

where FðtÞ ¼
R t

0
dt0Yðt0Þ: This result is valid for any

value of the degree k and the function FðtÞ is positive
and monotonously increasing. This last fact implies that
sk is decreasing monotonously towards zero when time
grows. Thus, if one has two values k4k0 and whatever
the initial conditions s0k and s0

k0 ; there is a time tx after
which skðtÞosk0 ðtÞ: This ‘crossing’ time is given by

fðtxÞ ¼
1

lðk � k0
Þ
log

s0k
s0

k0

" #
. (28)

(If s0kos0
k0 ; there is no crossing and for all times

skðtÞosk0 ðtÞ:) This result indicates that after an initial
regime which depends on the initial conditions, the
disease spreads always from large connectivity to
smaller connectivities.
We can go beyond the analytical result that is

necessarily grounded on average quantities by relying
on numerical simulations. Indeed, a more precise
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characterization of the epidemic diffusion through the
network can be achieved by studying some convenient
quantities that highlight the invasion pattern of the
infection in numerical spreading experiments in BA
networks. First, we measure the average degree of the
newly infected nodes at time t, defined as

k̄inf ðtÞ ¼

P
k k½IkðtÞ � Ikðt � 1Þ�

IðtÞ � Iðt � 1Þ
. (29)

In Fig. 7 we plot this quantity for BA networks as a
function of the rescaled time t=t: The curves show an
initial plateau that can be easily understood by
considering that at very low density of infected
individuals, each vertex will infect a fraction of its
neighbors without correlations with the spreading from
other vertices. In this case each edge points to a vertex
with degree k with probability kPðkÞ=hki and the
average degree of newly infected vertices is given by

k̄inf ðtÞ ¼ hk2
i=hki. (30)

After this initial regime, k̄inf ðtÞ decreases smoothly when
time increases. The dynamical spreading process is
therefore clear: after the hubs are very quickly infected
the spread is going always towards smaller values of k.
This is confirmed by the large time regime that settles in
a plateau

k̄inf ðtÞ ¼ m, (31)

which means that the vertices with the lowest degree are
typically the last to be infected.
Further information on the infection propagation is

provided by the inverse participation ratio Y2(t)
(Derrida and Flyvbjerg, 1987; Barthélemy et al., 2002).
We first define the weight of infected individuals in each
degree class k by wkðtÞ ¼ IkðtÞ=IðtÞ: The quantity Y2 is
1 10
t/τ
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20

40

60

k i
nf

 (t
) 

Fig. 7. Time behavior of the average degree of the newly infected

nodes for SI outbreaks in BA networks (here of size N ¼ 104). Time is

rescaled by t: Reference lines are drawn at the asymptotic values

hk2
i=hki for t5t and m for tbt: The two curves are for m ¼ 4

(bottom) and m ¼ 14 (top).
then defined as

Y 2ðtÞ ¼
X

k

w2
kðtÞ. (32)

If Y 2 � 1=kmax (kmax is the maximal connectivity),
infected vertices are homogeneously distributed among
all degree classes. In contrast, if Y2 is not small (of order
1/n with n of order unity) then the infection is localized
on some specific degree classes that dominate the sum of
Eq. (32). In Fig. 8 we report the behavior of Y2 versus
time for BA networks with different minimum degree.
The function Y2 has a maximum at the early time stage,
indicating that the infection is localized on the large k

classes, as we infer from the plot of k̄inf ðtÞ; see Fig. 7.
First Y2 decreases, with the infection progressively
invading lower degree classes, and providing a more
homogeneous diffusion of infected vertices in the
various k classes. Finally, the last stage of the process
corresponds to the capillary invasion of the lowest
degree classes which have a larger number of vertices
and thus provide a larger weight. In the very large time
limit, when the whole network is infected, Y 2ðt ¼ 1Þ ¼P

k PðkÞ2: Noticeably, curves for different levels of
heterogeneity have the same time profile in the rescaled
variable t=t: This implies that, despite the various
approximations used in the calculations, the whole
spreading process is dominated by the time-scale defined
in the early exponential regime of the outbreak.
The presented results provide a clear picture of the

infection propagation in heterogeneous networks. First
the infection takes control of the large degree vertices in
the network. Then it rapidly invades the network via a
cascade through progressively smaller degree classes.
The dynamical structure of the spreading is therefore
characterized by a hierarchical cascade from hubs to
intermediate k and finally to small k classes.
1 10
t/τ

0

0.1

0.2

Y
2(

t)

Fig. 8. Inverse participation ratio Y2 versus time for BA network of

size N ¼ 104 with minimum degree m ¼ 4; 6; 8; 10; 12; 14 and 20, from

top to bottom. Time is rescaled with t: The reference line indicates the
minimum of Y2 around t=t ’ 6:5:
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p
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6. The effect of the initial seed of the infection

In very heterogeneous networks it is reasonable to
forecast that epidemic outbreaks starting from indivi-
duals possessing very different connectivity properties
may undergo a rather different time evolution. In order
to investigate in more detail the effect of initial
conditions, one can write the general solution of Eqs.
(12) with ikðt ¼ 0Þ ¼ f ðkÞ where f is some given function
of the degree

ikðtÞ ¼ f ðkÞ þ kY0
hki

hk2
i � hki

½et=t � 1�, (33)

whereY0 ¼ Yðt ¼ 0Þ ¼ hkf ðkÞi=hki: Comparing this last
expression with Eq. (13), we conclude that, apart from
the effect of the initial density of infected individuals, the
only effect in the dynamics is the presence of the
prefactor Y0; which implies that the spreading is faster
for larger Y0: In the particular case in which the initial
infection is located on N0 vertices of given degree k0, we
obtain ik0 ðt ¼ 0Þ ¼ N0=ðNPðk0ÞÞ and thus Y0 ¼

k0N0=ðNhkiÞ: Analogously it is easy to see that, for N0

initially contaminated sites, all with connectivity larger
than a certain kM ; Y0 is proportional both to N0=N and
to kM.
Eq. (33) clearly highlights the role of the large

connectivity sites: on the one hand, for a given initial
condition, the infection of classes with larger k leads to
faster rise of the epidemic; on the other hand, the larger
the degree of the initially infected sites, the faster the
propagation of the epidemics. Note however that the
time-scale t itself is not affected by the initial conditions,
which appear through the prefactors only. Using Eq.
(33) we can highlight these features since the right-hand
side of the expression

ikðtÞ � f ðkÞ

kY0
¼

hki

hk2
i � hki

½et=t � 1� (34)

has to be independent on both the initial conditions
(which enter ik only through f(k) and Y0) and the degree
k. We have verified this in Fig. 9, by means of numerical
simulations of the SI model on BA networks with
specific initial conditions: if the spreading starts from N0

infected sites of connectivity k0,Y0 is proportional to N0

and k0, so that we show that the quantity

ikðtÞ � f ðkÞ

kN0k0
(35)

is independent of k and k0, and is also equal to

iðtÞ � i0

hkiN0k0
. (36)

At large times the curves separate since the expression
(13) is no longer valid. The data collapse of Fig. 9 once
again shows the validity of the analytical approach
developed in Section 3. The time-scale t for the
exponentially fast outbreak of the epidemics is relevant
for any kind of initial conditions and for all nodes,
independently from their connectivity. The prefactors
however show that the spreading is faster if the infected
seeds have a large connectivity and, among the
connectivity classes, hubs are typically infected faster.
7. Fluctuations: the relevance of t for single case studies

The previous results are valid for the average density
of infected nodes and it is legitimate to ask about the
relevance of these results to the case of a single network
sample. Indeed, in the real-world there is not such a
thing as averages over different network realizations and
we have to check the robustness of our results on a
single network sample. It is then natural to wonder if
large statistical fluctuations in the network structure
may reverberate on the difference between single case
studies and asymptotic average results. In particular, we
can compare the previously defined time-scale t (Eq.
(15)), which corresponds to the exponential growth of
the prevalence averaged over the networks statistical
properties and initial conditions, with an operative
measure of time-scale obtained in a single network
realization case study. For a given network, and starting
from a given initial density of infected vertices i0, we
define for each run of the spreading process the typical
realization time-scale as the time t0 at which the density
of infected nodes irun (t) in the specific run is equal to the
average quantity i(t) at time t provided by Eq. (14). This
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defines t0 as the effective time at which irunðt ¼ t0Þ ¼
iðt ¼ tÞ (see Fig. 10). The deviation from the average
behavior in each run can be readily accounted by the
variable u ¼ t0=t which is a simple measure of the
relevance of t for each run. In Fig. 11(a), we plot the
probability distribution of u computed for a given
realization of the network. This figure shows that P(u) is
not broadly distributed. In other words it is very
unlikely to find large deviations of u from the unity, at
which the distribution is strongly peaked. This evidence
indicates that even if fluctuations are possible, the time-
scale defined by t is a meaningful characterization of the
spreading process.
A more detailed analysis highlights once more the key

role of initial conditions in the epidemics spread. In Fig.
11(b), we used the same network as in Fig. 11(a), but we
made the following distinction according to the con-
nectivity of the initially infected nodes. We used initial
conditions (i) with small connectivity ko10 and (ii) with
large connectivity k450 (the maximal connectivity of
the network is 100 in this case). Fig. 11(b) shows that the
condition (ii) is the main contribution to the small uo1
values while it is the condition (i) which contributes
mostly to the larger values u41: These results can be
easily explained as follows: We know from previous
sections that the first steps of the epidemics process are
concerning the hubs’ infection. In the case (i), the path
from the infected seeds to the hubs can be long and can
thus induce a slower growth in i(t). In the opposite case
(ii), instead, the seeds are mainly located on the hubs
since the beginning and the initial outbreak is generally
faster that the average. This clear difference tells us that
statistical deviations from the average time-scale t can
be traced back to the initial conditions of the epidemics.
In this perspective, the specific network realizations
appear to have a rather small influence on statistical
fluctuations. This last feature is due to the intrinsic large
amount of connectivity fluctuations that each network
realization possesses in the case of a very heterogeneous
topology. Additional fluctuations, such as those stem-
ming from the specific realization and finite size, are thus
a higher order correction to the intrinsic statistical
fluctuations which are accounted for correctly in the
theoretical description.
More generally, these results show that initial condi-

tions induce fluctuations in the outbreak time which are
never ‘large’ in the sense that P(u) decays rapidly, which
implies that the time-scale t is relevant even for a single
realization of the network. This result is important since
in real world situations, the disease spreads on one single
network and it has to be checked whether results
obtained on average are relevant or not.
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8. Conclusions

In this paper, we have provided a general picture of
the effect of complex connectivity patterns in the
spreading dynamics of epidemic phenomena. We have
shown how the large connectivity fluctuations present in
a large class of population networks lead to a novel
epidemiological framework in which both the epidemic
threshold and the growth time-scale of the outbreak do
not have an intrinsic value. Indeed, the virtual lack of
epidemic threshold and instantaneous rising of the
prevalence in infinitely large networks corresponds to
non-intrinsic quantities depending on the specific system
size of the actual population. In addition, the dynamical
structure of the spreading process is characterized by a
hierarchical cascade from hubs to intermediate k and
finally to small k vertices. That is, the infection first
takes place on the subset of individuals with the largest
number of contacts, and then progressively invades
individuals with decreasing number of contacts. The
emerging picture might be of practical importance in the
implementation and assessment of dynamic control
strategies. In particular, an efficient way to stop
epidemics could rely on a dynamical deployment of
containment measures that focuses on progressively
changing classes of the population. More specifically,
our results confirm the importance of control strategies
targeting the hubs of the population but also highlight
the fact that global surveillance is a major key aspect of
epidemics control and that immunization strategies have
to evolve with time during the different phases of the
spread.
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